The properties of Pd/Au bimetallic colloidal catalysts stabilized by chitosan and prepared by simultaneous and stepwise chemical reduction of the precursor ions

Publication Name : KINETICS AND CATALYSIS

DOI : 10.1134/S0023158413050017

Date : SEP 2013


Bimetallic Pd/Au nanoparticle catalysts were prepared with chitosan as a stabilizer. The preparation procedure included mixing or stepwise adding palladium and gold ions in various molar ratios followed by simultaneous or stepwise reduction using either methanol or sodium borohydride (nb) as reducing agents. TEM and UV-Vis characterization showed that the particle size of bimetallic Chi-Pd/Au prepared by simultaneous reduction was smaller than that of the samples prepared by stepwise reduction methods. The particle size varied in the 1 to 24 nm range at all Pd/Au molar ratios of bimetallic compositions. Sodium borohydride was the most effective reducing agent for the preparation of bimetallic Chi-Pd(core)A(ushell) by the stepwise reduction. The catalytic activities of Chi-Pd/Au prepared by either simultaneous or stepwise reductions were generally higher than those of the respective monometallic systems whereas the most active catalysts were prepared by the simultaneous reduction. Shielding the palladium metal colloid with gold sol led to the decrease in catalytic activity. The turnover frequencies (TOFs) for Chi-Pd/Au-me in catalytic hydrogenation of 1-octene were as high as 20.855 and 89.336 for monometallic and bimetallic catalysts respectively. TOFs for Chi-Pd/Au-nb were in the region between 2.978 and 87.429. The core-shell and alloy formation of the bimetallic Chi-Pd/Au were inferred from the particle size measurements and evaluation of catalytic activity.

Type
Journal
ISSN
0023-1584
EISSN
1608-3210
Page
586 - 596